Info site

powered by PrMania.NetMsn bot last visit powered by  PrMania.NetGoogle bot last visit powered by PrMania.NetYahoo bot last visit powered by  PrMania.NetPowered by PrMania.Net

Jendela

Space Your Banner

Space Your Banner
MUr4h b4N93T

Bilangan Titik-Kambang


Untuk memahami galat pembulatan lebih rinci, kita perlu mengerti cara penyimpanan bilangan riil di dalam komputer. Format bilangan riil di dalam komputer berbeda-beda bergantung pada piranti keras dan compiler bahasa pemrogramannya. Bilangan riil di dalam komputer umumnya disajikan dalam format bilangan titik-kambang. Bilangan titik -kambang a ditulis sebagai
a = m B p = 0.d1d2d3d4d5d6 ...dn Bp (P.2.17)
yang dalam hal ini, m = mantisa (riil), d1d2d3d4d5d6 ...dn adalah digit atau bit mantisa yang
nilainya dari 0 sampai B – 1, n adalah panjang digit (bit) mantisa. B = basis sistem bilangan yang dipakai (2, 8, 10, 16, dan sebagainya) p = pangkat (berupa bilangan bulat), nilainya dari –Pmin sampai +Pmaks

32 Metode Numerik
Sebagai contoh, bilangan riil 245.7654 dinyatakan sebagai 0.2457654 103 dalam format bilangan titik kambang dengan basis 10. Cara penyajian seperti itu serupa dengan cara penulisan ilmiah. Penulisan ilmiah termasuk ke dalam system bilangan titik-kambang. Sistem bilangan yang kita gunakan setiap hari menggunakan basis sepuluh (disebut juga sistem desimal), B = 10. Umumnya komputer menggunakan system biner (B = 2), tapi beberapa komputer menggunakan basis 8 dan 16. Untuk memudahkan pemahaman –juga karena kita lebih terbiasa sehari-hari dengan bilangan desimal– kebanyakan contoh-contoh bilangan titik-kambang di dalam bab ini disajikan dalam sistem desimal. Bilangan titik-kambang di dalam sistem biner biner direpresentasikan oleh komputer dalam bentuk word seperti ditunjukkan pada Gambar 2.2. Bit pertama menyatakan tanda (+/-), deretan bit berikutnya menyatakan pangkat bertanda, dan deretan bit terakhir untuk mantisa.
Setiap komputer memiliki panjang word yang berbeda-beda. Pada komputer IBM PC, bilangan titik-kambang berketelitian tunggal (single precission) disajikan dalam 32 bit yang terdiri atas 1 bit sebagai tanda, 8 bit untuk pangkat dan 23 bit untuk mantisa. Jika dalam bentuk ternormalisasi (akan dijelaskan kemudian), maka bit pertama pada mantisa harus 1, sehingga jumlah bit mantisa efektif adalah 24:
a = 0.1b1b2b3b4b5b6 ...b23 Bp
yang dalam hal ini b menyatakan bit biner (0 atau 1). Sedangkan pada komputer IBM 370, bilangan titik-kambang berketelitian tunggal disajikan dalam 32 bit yang terdiri dari 1 bit tanda, 7 bit pangkat (basis 16), dan 24 bit mantis (setara dengan 6 sampai 7 digit desimal).

0 komentar:

Supported

Supported
My LOve Organisasi